\(\int \frac {(a+b \cos (c+d x))^3 (A+B \cos (c+d x)+C \cos ^2(c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx\) [1082]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 43, antiderivative size = 279 \[ \int \frac {(a+b \cos (c+d x))^3 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {2 \left (15 a^2 b B+3 b^3 B-5 a^3 (A-C)+3 a b^2 (5 A+3 C)\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 \left (21 a^3 B+21 a b^2 B+21 a^2 b (3 A+C)+b^3 (7 A+5 C)\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}+\frac {2 b \left (21 a b B-6 a^2 (7 A-3 C)+b^2 (7 A+5 C)\right ) \sqrt {\cos (c+d x)} \sin (c+d x)}{21 d}-\frac {2 b^2 (35 a A-7 b B-11 a C) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{35 d}-\frac {2 b (7 A-C) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^2 \sin (c+d x)}{7 d}+\frac {2 A (a+b \cos (c+d x))^3 \sin (c+d x)}{d \sqrt {\cos (c+d x)}} \]

[Out]

2/5*(15*B*a^2*b+3*B*b^3-5*a^3*(A-C)+3*a*b^2*(5*A+3*C))*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*Ellipti
cE(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/21*(21*B*a^3+21*B*a*b^2+21*a^2*b*(3*A+C)+b^3*(7*A+5*C))*(cos(1/2*d*x+1/2*c)
^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d-2/35*b^2*(35*A*a-7*B*b-11*C*a)*cos(d*x+c)
^(3/2)*sin(d*x+c)/d+2*A*(a+b*cos(d*x+c))^3*sin(d*x+c)/d/cos(d*x+c)^(1/2)+2/21*b*(21*B*a*b-6*a^2*(7*A-3*C)+b^2*
(7*A+5*C))*sin(d*x+c)*cos(d*x+c)^(1/2)/d-2/7*b*(7*A-C)*(a+b*cos(d*x+c))^2*sin(d*x+c)*cos(d*x+c)^(1/2)/d

Rubi [A] (verified)

Time = 0.91 (sec) , antiderivative size = 279, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.163, Rules used = {3126, 3128, 3112, 3102, 2827, 2720, 2719} \[ \int \frac {(a+b \cos (c+d x))^3 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {2 b \sin (c+d x) \sqrt {\cos (c+d x)} \left (-6 a^2 (7 A-3 C)+21 a b B+b^2 (7 A+5 C)\right )}{21 d}+\frac {2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \left (21 a^3 B+21 a^2 b (3 A+C)+21 a b^2 B+b^3 (7 A+5 C)\right )}{21 d}+\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \left (-5 a^3 (A-C)+15 a^2 b B+3 a b^2 (5 A+3 C)+3 b^3 B\right )}{5 d}-\frac {2 b^2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x) (35 a A-11 a C-7 b B)}{35 d}-\frac {2 b (7 A-C) \sin (c+d x) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^2}{7 d}+\frac {2 A \sin (c+d x) (a+b \cos (c+d x))^3}{d \sqrt {\cos (c+d x)}} \]

[In]

Int[((a + b*Cos[c + d*x])^3*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2))/Cos[c + d*x]^(3/2),x]

[Out]

(2*(15*a^2*b*B + 3*b^3*B - 5*a^3*(A - C) + 3*a*b^2*(5*A + 3*C))*EllipticE[(c + d*x)/2, 2])/(5*d) + (2*(21*a^3*
B + 21*a*b^2*B + 21*a^2*b*(3*A + C) + b^3*(7*A + 5*C))*EllipticF[(c + d*x)/2, 2])/(21*d) + (2*b*(21*a*b*B - 6*
a^2*(7*A - 3*C) + b^2*(7*A + 5*C))*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(21*d) - (2*b^2*(35*a*A - 7*b*B - 11*a*C)*
Cos[c + d*x]^(3/2)*Sin[c + d*x])/(35*d) - (2*b*(7*A - C)*Sqrt[Cos[c + d*x]]*(a + b*Cos[c + d*x])^2*Sin[c + d*x
])/(7*d) + (2*A*(a + b*Cos[c + d*x])^3*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]])

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3102

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Dist[1/(
b*(m + 2)), Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m + 2) - a*C)*Sin[e + f*x], x],
x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rule 3112

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])*((A_.) + (B_.)*sin[(e
_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*d*Cos[e + f*x]*Sin[e + f*x]*((a +
 b*Sin[e + f*x])^(m + 1)/(b*f*(m + 3))), x] + Dist[1/(b*(m + 3)), Int[(a + b*Sin[e + f*x])^m*Simp[a*C*d + A*b*
c*(m + 3) + b*(B*c*(m + 3) + d*(C*(m + 2) + A*(m + 3)))*Sin[e + f*x] - (2*a*C*d - b*(c*C + B*d)*(m + 3))*Sin[e
 + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] &&
  !LtQ[m, -1]

Rule 3126

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(c^2*C - B*c*d + A*d^2))*Cos[e
+ f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - d^2))), x] + Dist[1/(d*(n + 1)
*(c^2 - d^2)), Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(b*d*m + a*c*(n + 1)) +
(c*C - B*d)*(b*c*m + a*d*(n + 1)) - (d*(A*(a*d*(n + 2) - b*c*(n + 1)) + B*(b*d*(n + 1) - a*c*(n + 2))) - C*(b*
c*d*(n + 1) - a*(c^2 + d^2*(n + 1))))*Sin[e + f*x] + b*(d*(B*c - A*d)*(m + n + 2) - C*(c^2*(m + 1) + d^2*(n +
1)))*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2
, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 0] && LtQ[n, -1]

Rule 3128

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (B_.)
*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*(a + b*Sin[e
+ f*x])^m*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(m + n + 2))), x] + Dist[1/(d*(m + n + 2)), Int[(a + b*Sin[e + f*
x])^(m - 1)*(c + d*Sin[e + f*x])^n*Simp[a*A*d*(m + n + 2) + C*(b*c*m + a*d*(n + 1)) + (d*(A*b + a*B)*(m + n +
2) - C*(a*c - b*d*(m + n + 1)))*Sin[e + f*x] + (C*(a*d*m - b*c*(m + 1)) + b*B*d*(m + n + 2))*Sin[e + f*x]^2, x
], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d
^2, 0] && GtQ[m, 0] &&  !(IGtQ[n, 0] && ( !IntegerQ[m] || (EqQ[a, 0] && NeQ[c, 0])))

Rubi steps \begin{align*} \text {integral}& = \frac {2 A (a+b \cos (c+d x))^3 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}+2 \int \frac {(a+b \cos (c+d x))^2 \left (\frac {1}{2} (6 A b+a B)+\frac {1}{2} (b B-a (A-C)) \cos (c+d x)-\frac {1}{2} b (7 A-C) \cos ^2(c+d x)\right )}{\sqrt {\cos (c+d x)}} \, dx \\ & = -\frac {2 b (7 A-C) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^2 \sin (c+d x)}{7 d}+\frac {2 A (a+b \cos (c+d x))^3 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}+\frac {4}{7} \int \frac {(a+b \cos (c+d x)) \left (\frac {1}{4} a (35 A b+7 a B+b C)+\frac {1}{4} \left (14 a b B-7 a^2 (A-C)+b^2 (7 A+5 C)\right ) \cos (c+d x)-\frac {1}{4} b (35 a A-7 b B-11 a C) \cos ^2(c+d x)\right )}{\sqrt {\cos (c+d x)}} \, dx \\ & = -\frac {2 b^2 (35 a A-7 b B-11 a C) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{35 d}-\frac {2 b (7 A-C) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^2 \sin (c+d x)}{7 d}+\frac {2 A (a+b \cos (c+d x))^3 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}+\frac {8}{35} \int \frac {\frac {5}{8} a^2 (35 A b+7 a B+b C)+\frac {7}{8} \left (15 a^2 b B+3 b^3 B-5 a^3 (A-C)+3 a b^2 (5 A+3 C)\right ) \cos (c+d x)+\frac {5}{8} b \left (21 a b B-6 a^2 (7 A-3 C)+b^2 (7 A+5 C)\right ) \cos ^2(c+d x)}{\sqrt {\cos (c+d x)}} \, dx \\ & = \frac {2 b \left (21 a b B-6 a^2 (7 A-3 C)+b^2 (7 A+5 C)\right ) \sqrt {\cos (c+d x)} \sin (c+d x)}{21 d}-\frac {2 b^2 (35 a A-7 b B-11 a C) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{35 d}-\frac {2 b (7 A-C) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^2 \sin (c+d x)}{7 d}+\frac {2 A (a+b \cos (c+d x))^3 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}+\frac {16}{105} \int \frac {\frac {5}{16} \left (21 a^3 B+21 a b^2 B+21 a^2 b (3 A+C)+b^3 (7 A+5 C)\right )+\frac {21}{16} \left (15 a^2 b B+3 b^3 B-5 a^3 (A-C)+3 a b^2 (5 A+3 C)\right ) \cos (c+d x)}{\sqrt {\cos (c+d x)}} \, dx \\ & = \frac {2 b \left (21 a b B-6 a^2 (7 A-3 C)+b^2 (7 A+5 C)\right ) \sqrt {\cos (c+d x)} \sin (c+d x)}{21 d}-\frac {2 b^2 (35 a A-7 b B-11 a C) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{35 d}-\frac {2 b (7 A-C) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^2 \sin (c+d x)}{7 d}+\frac {2 A (a+b \cos (c+d x))^3 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}+\frac {1}{5} \left (15 a^2 b B+3 b^3 B-5 a^3 (A-C)+3 a b^2 (5 A+3 C)\right ) \int \sqrt {\cos (c+d x)} \, dx+\frac {1}{21} \left (21 a^3 B+21 a b^2 B+21 a^2 b (3 A+C)+b^3 (7 A+5 C)\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx \\ & = \frac {2 \left (15 a^2 b B+3 b^3 B-5 a^3 (A-C)+3 a b^2 (5 A+3 C)\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 \left (21 a^3 B+21 a b^2 B+21 a^2 b (3 A+C)+b^3 (7 A+5 C)\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}+\frac {2 b \left (21 a b B-6 a^2 (7 A-3 C)+b^2 (7 A+5 C)\right ) \sqrt {\cos (c+d x)} \sin (c+d x)}{21 d}-\frac {2 b^2 (35 a A-7 b B-11 a C) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{35 d}-\frac {2 b (7 A-C) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^2 \sin (c+d x)}{7 d}+\frac {2 A (a+b \cos (c+d x))^3 \sin (c+d x)}{d \sqrt {\cos (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 4.16 (sec) , antiderivative size = 212, normalized size of antiderivative = 0.76 \[ \int \frac {(a+b \cos (c+d x))^3 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {-84 \left (-15 a^2 b B-3 b^3 B+5 a^3 (A-C)-3 a b^2 (5 A+3 C)\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+20 \left (21 a^3 B+21 a b^2 B+21 a^2 b (3 A+C)+b^3 (7 A+5 C)\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+\frac {\left (420 a^3 A+42 b^3 B+126 a b^2 C+5 b \left (28 A b^2+84 a b B+84 a^2 C+29 b^2 C\right ) \cos (c+d x)+42 b^2 (b B+3 a C) \cos (2 (c+d x))+15 b^3 C \cos (3 (c+d x))\right ) \sin (c+d x)}{\sqrt {\cos (c+d x)}}}{210 d} \]

[In]

Integrate[((a + b*Cos[c + d*x])^3*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2))/Cos[c + d*x]^(3/2),x]

[Out]

(-84*(-15*a^2*b*B - 3*b^3*B + 5*a^3*(A - C) - 3*a*b^2*(5*A + 3*C))*EllipticE[(c + d*x)/2, 2] + 20*(21*a^3*B +
21*a*b^2*B + 21*a^2*b*(3*A + C) + b^3*(7*A + 5*C))*EllipticF[(c + d*x)/2, 2] + ((420*a^3*A + 42*b^3*B + 126*a*
b^2*C + 5*b*(28*A*b^2 + 84*a*b*B + 84*a^2*C + 29*b^2*C)*Cos[c + d*x] + 42*b^2*(b*B + 3*a*C)*Cos[2*(c + d*x)] +
 15*b^3*C*Cos[3*(c + d*x)])*Sin[c + d*x])/Sqrt[Cos[c + d*x]])/(210*d)

Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 6.46 (sec) , antiderivative size = 983, normalized size of antiderivative = 3.52

method result size
parts \(\text {Expression too large to display}\) \(983\)
default \(\text {Expression too large to display}\) \(1278\)

[In]

int((a+b*cos(d*x+c))^3*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(3/2),x,method=_RETURNVERBOSE)

[Out]

2*(3*A*a^2*b+B*a^3)/d*InverseJacobiAM(1/2*d*x+1/2*c,2^(1/2))-2/5*(B*b^3+3*C*a*b^2)*((-1+2*cos(1/2*d*x+1/2*c)^2
)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-8*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6+8*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1
/2*c)-2*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2
)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*
c)/(-1+2*cos(1/2*d*x+1/2*c)^2)^(1/2)/d-2/3*(A*b^3+3*B*a*b^2+3*C*a^2*b)*((-1+2*cos(1/2*d*x+1/2*c)^2)*sin(1/2*d*
x+1/2*c)^2)^(1/2)*(4*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)-2*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+(sin(1/
2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)))/(-2*sin(1/2*d*x+
1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(-1+2*cos(1/2*d*x+1/2*c)^2)^(1/2)/d+2*(3*A*a*b^2+3*B*a
^2*b+C*a^3)*((-1+2*cos(1/2*d*x+1/2*c)^2)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*
d*x+1/2*c)^2+1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/
2)/sin(1/2*d*x+1/2*c)/(-1+2*cos(1/2*d*x+1/2*c)^2)^(1/2)/d-2*A*a^3*(-2*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2
*c)^2)^(1/2)*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2+(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(
1/2)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))/(-2*sin(1/2*d
*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(-1+2*cos(1/2*d*x+1/2*c)^2)^(1/2)/d-2/21*C*b^3*((-1
+2*cos(1/2*d*x+1/2*c)^2)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(48*cos(1/2*d*x+1/2*c)^9-120*cos(1/2*d*x+1/2*c)^7+128*cos
(1/2*d*x+1/2*c)^5-72*cos(1/2*d*x+1/2*c)^3+5*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*Ell
ipticF(cos(1/2*d*x+1/2*c),2^(1/2))+16*cos(1/2*d*x+1/2*c))/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)
/sin(1/2*d*x+1/2*c)/(-1+2*cos(1/2*d*x+1/2*c)^2)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.14 (sec) , antiderivative size = 378, normalized size of antiderivative = 1.35 \[ \int \frac {(a+b \cos (c+d x))^3 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=-\frac {5 \, \sqrt {2} {\left (21 i \, B a^{3} + 21 i \, {\left (3 \, A + C\right )} a^{2} b + 21 i \, B a b^{2} + i \, {\left (7 \, A + 5 \, C\right )} b^{3}\right )} \cos \left (d x + c\right ) {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 5 \, \sqrt {2} {\left (-21 i \, B a^{3} - 21 i \, {\left (3 \, A + C\right )} a^{2} b - 21 i \, B a b^{2} - i \, {\left (7 \, A + 5 \, C\right )} b^{3}\right )} \cos \left (d x + c\right ) {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 21 \, \sqrt {2} {\left (5 i \, {\left (A - C\right )} a^{3} - 15 i \, B a^{2} b - 3 i \, {\left (5 \, A + 3 \, C\right )} a b^{2} - 3 i \, B b^{3}\right )} \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 21 \, \sqrt {2} {\left (-5 i \, {\left (A - C\right )} a^{3} + 15 i \, B a^{2} b + 3 i \, {\left (5 \, A + 3 \, C\right )} a b^{2} + 3 i \, B b^{3}\right )} \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - 2 \, {\left (15 \, C b^{3} \cos \left (d x + c\right )^{3} + 105 \, A a^{3} + 21 \, {\left (3 \, C a b^{2} + B b^{3}\right )} \cos \left (d x + c\right )^{2} + 5 \, {\left (21 \, C a^{2} b + 21 \, B a b^{2} + {\left (7 \, A + 5 \, C\right )} b^{3}\right )} \cos \left (d x + c\right )\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{105 \, d \cos \left (d x + c\right )} \]

[In]

integrate((a+b*cos(d*x+c))^3*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(3/2),x, algorithm="fricas")

[Out]

-1/105*(5*sqrt(2)*(21*I*B*a^3 + 21*I*(3*A + C)*a^2*b + 21*I*B*a*b^2 + I*(7*A + 5*C)*b^3)*cos(d*x + c)*weierstr
assPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + 5*sqrt(2)*(-21*I*B*a^3 - 21*I*(3*A + C)*a^2*b - 21*I*B*a*b
^2 - I*(7*A + 5*C)*b^3)*cos(d*x + c)*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 21*sqrt(2)*(5
*I*(A - C)*a^3 - 15*I*B*a^2*b - 3*I*(5*A + 3*C)*a*b^2 - 3*I*B*b^3)*cos(d*x + c)*weierstrassZeta(-4, 0, weierst
rassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + 21*sqrt(2)*(-5*I*(A - C)*a^3 + 15*I*B*a^2*b + 3*I*(5*A +
 3*C)*a*b^2 + 3*I*B*b^3)*cos(d*x + c)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d
*x + c))) - 2*(15*C*b^3*cos(d*x + c)^3 + 105*A*a^3 + 21*(3*C*a*b^2 + B*b^3)*cos(d*x + c)^2 + 5*(21*C*a^2*b + 2
1*B*a*b^2 + (7*A + 5*C)*b^3)*cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c))

Sympy [F(-1)]

Timed out. \[ \int \frac {(a+b \cos (c+d x))^3 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\text {Timed out} \]

[In]

integrate((a+b*cos(d*x+c))**3*(A+B*cos(d*x+c)+C*cos(d*x+c)**2)/cos(d*x+c)**(3/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {(a+b \cos (c+d x))^3 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} {\left (b \cos \left (d x + c\right ) + a\right )}^{3}}{\cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

[In]

integrate((a+b*cos(d*x+c))^3*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(3/2),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*(b*cos(d*x + c) + a)^3/cos(d*x + c)^(3/2), x)

Giac [F]

\[ \int \frac {(a+b \cos (c+d x))^3 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} {\left (b \cos \left (d x + c\right ) + a\right )}^{3}}{\cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

[In]

integrate((a+b*cos(d*x+c))^3*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(3/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*(b*cos(d*x + c) + a)^3/cos(d*x + c)^(3/2), x)

Mupad [B] (verification not implemented)

Time = 3.98 (sec) , antiderivative size = 398, normalized size of antiderivative = 1.43 \[ \int \frac {(a+b \cos (c+d x))^3 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {2\,\left (C\,a^3\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )+C\,a^2\,b\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )+C\,a^2\,b\,\sqrt {\cos \left (c+d\,x\right )}\,\sin \left (c+d\,x\right )\right )}{d}+\frac {A\,b^3\,\left (\frac {2\,\sqrt {\cos \left (c+d\,x\right )}\,\sin \left (c+d\,x\right )}{3}+\frac {2\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{3}\right )}{d}+\frac {2\,B\,a^3\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {6\,A\,a\,b^2\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {6\,A\,a^2\,b\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {6\,B\,a^2\,b\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {3\,B\,a\,b^2\,\left (\frac {2\,\sqrt {\cos \left (c+d\,x\right )}\,\sin \left (c+d\,x\right )}{3}+\frac {2\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{3}\right )}{d}+\frac {2\,A\,a^3\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}-\frac {2\,B\,b^3\,{\cos \left (c+d\,x\right )}^{7/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {7}{4};\ \frac {11}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{7\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}}-\frac {2\,C\,b^3\,{\cos \left (c+d\,x\right )}^{9/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {9}{4};\ \frac {13}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{9\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}}-\frac {6\,C\,a\,b^2\,{\cos \left (c+d\,x\right )}^{7/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {7}{4};\ \frac {11}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{7\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \]

[In]

int(((a + b*cos(c + d*x))^3*(A + B*cos(c + d*x) + C*cos(c + d*x)^2))/cos(c + d*x)^(3/2),x)

[Out]

(2*(C*a^3*ellipticE(c/2 + (d*x)/2, 2) + C*a^2*b*ellipticF(c/2 + (d*x)/2, 2) + C*a^2*b*cos(c + d*x)^(1/2)*sin(c
 + d*x)))/d + (A*b^3*((2*cos(c + d*x)^(1/2)*sin(c + d*x))/3 + (2*ellipticF(c/2 + (d*x)/2, 2))/3))/d + (2*B*a^3
*ellipticF(c/2 + (d*x)/2, 2))/d + (6*A*a*b^2*ellipticE(c/2 + (d*x)/2, 2))/d + (6*A*a^2*b*ellipticF(c/2 + (d*x)
/2, 2))/d + (6*B*a^2*b*ellipticE(c/2 + (d*x)/2, 2))/d + (3*B*a*b^2*((2*cos(c + d*x)^(1/2)*sin(c + d*x))/3 + (2
*ellipticF(c/2 + (d*x)/2, 2))/3))/d + (2*A*a^3*sin(c + d*x)*hypergeom([-1/4, 1/2], 3/4, cos(c + d*x)^2))/(d*co
s(c + d*x)^(1/2)*(sin(c + d*x)^2)^(1/2)) - (2*B*b^3*cos(c + d*x)^(7/2)*sin(c + d*x)*hypergeom([1/2, 7/4], 11/4
, cos(c + d*x)^2))/(7*d*(sin(c + d*x)^2)^(1/2)) - (2*C*b^3*cos(c + d*x)^(9/2)*sin(c + d*x)*hypergeom([1/2, 9/4
], 13/4, cos(c + d*x)^2))/(9*d*(sin(c + d*x)^2)^(1/2)) - (6*C*a*b^2*cos(c + d*x)^(7/2)*sin(c + d*x)*hypergeom(
[1/2, 7/4], 11/4, cos(c + d*x)^2))/(7*d*(sin(c + d*x)^2)^(1/2))